
BAYESIAN AND GAUSSIAN PROCESS NEURAL NETWORKS FOR LARGE VOCABULARY
CONTINUOUS SPEECH RECOGNITION

Shoukang Hu, Max W. Y. Lam, Xurong Xie, Shansong Liu, Jianwei Yu, Xixin Wu, Xunying Liu, Helen Meng

The Chinese University of Hong Kong, Hong Kong SAR, China
{skhu, wylam, ssliu, jwyu, xxwu, xyliu, hmmeng}@se.cuhk.edu.hk {xrxie}@ee.cuhk.edu.hk

ABSTRACT
The hidden activation functions inside deep neural networks (DNNs)
play a vital role in learning high level discriminative features and
controlling the information flows to track longer history. However,
the fixed model parameters used in standard DNNs can lead to over-
fitting and poor generalization when given limited training data. Fur-
thermore, the precise forms of activations used in DNNs are often
manually set at a global level for all hidden nodes, thus lacking an au-
tomatic selection method. In order to address these issues, Bayesian
neural networks (BNNs) acoustic models are proposed in this paper
to explicitly model the uncertainty associated with DNN parameters.
Gaussian Process (GP) activations based DNN and LSTM acoustic
models are also used in this paper to allow the optimal forms of
hidden activations to be stochastically learned for individual hidden
nodes. An efficient variational inference based training algorithm
is derived for BNN, GPNN and GPLSTM systems. Experiments
were conducted on a LVCSR system trained on a 75 hour subset
of Switchboard I data. The best BNN and GPNN systems outper-
formed both the baseline DNN systems constructed using fixed form
activations and their combination via frame level joint decoding by
1% absolute in word error rate.

Index Terms— Bayesian Neural Network, Gaussian Process
Neural Network, activation function selection, speech recognition

1. INTRODUCTION

There has been a long history of interest in applying artificial neural
networks (ANNs) in speech recognition systems [1, 2, 3, 4]. In re-
cent years, the rapid advanced deep learning technologies [5] allow
them to be widely used in state-of-the-art speech recognition systems
[6, 7, 8, 9].

Two issues arise when designing deep neural network (DNN)
based speech recognition systems. First, fixed parameter based
DNNs can lead to over-fitting and poor generalization when given
limited data. Second, there have been a wide range of activation
functions developed over years to improve the performance of DNN
based recognition systems. The early forms of hybrid DNN systems
used Sigmoid activation functions. Rectified Linear Units (ReLUs)
[10, 11] were proposed in recent years to achieve fast convergence
in training. In order to model long-range temporal dependencies
in speech data, long short-term memory (LSTM) cells [12, 13]
were also widely used in recurrent neural network based speech
recognition systems.

In order to address the issue associated with parameter uncer-
tainty, Bayesian Neural Networks (BNNs) were commonly adopted.

This research was partially funded by Research Grants Council of Hong
Kong General Research grant Fund No.14200218, and the Chinese Univer-
sity of Hong Kong (CUHK) grant No. 4055065.

In the machine learning community, a series of previous research
were conducted in this direction. A practical Bayesian framework
for back-propagation networks was introduced in [14]. Efficient
variational learning based inference was later proposed in [15] for
BNNs. In contrast, limited research has been conducted to apply
BNNs for speech recognition systems. In [16], a Bayesian recurrent
neural network (RNN) using variational inference based training was
evaluated on the TIMIT corpus. A Bayesian learning approach for
RNN language models was also proposed in [17].

In terms of the uncertainty associated with activation functions,
previous research is more limited. A fixed, deterministic weight-
ing based multiple hidden activations combination method was pro-
posed in [18]. A special case of Gaussian Process Neural Networks
(GPNNs) using a fixed weight combination of multiple Bayesian
Neural Networks [19] was proposed in our earlier research. How-
ever, in both cases, the combination weights for activation selec-
tion were fixed-point estimates, thus considering no parameter un-
certainty given limited data. In order to address this issue, in this
paper we propose more general forms of GPNNs to handle the un-
certainty associated with both activation weight parameters and their
combination weights. Gaussian Process based LSTM acoustic mod-
els are also proposed.

To the best of our knowledge, this paper is the first attempt to
apply BNN, GPNN and GPLSTM acoustic models for LVCSR tasks.
Our previous research of GPNN reported in [19] was a simplified
case of the more general forms of GPNN systems considered in this
paper, and only evaluated on a smaller vocabulary continuous speech
recognition task on the Resource Management corpus.

The rest of this paper is organized as follows. Section 2 and Sec-
tion 3 introduce the DNN and BNN models. GPNN and GPLSTM
models are proposed in Section 4 and Section 5. A variational in-
ference based efficient training algorithm is presented in Section 6.
Section 7 presents the experiments and results. Finally, the conclu-
sions are drawn in Section 8.

2. DEEP NEURAL NETWORK

Deep Neural Networks (DNNs) learn the fixed-point parameter es-
timates through the training data {xt, ŷt}. Given an input vector
z(l−1) from (l − 1)-th layer, a standard DNN in Table 1 (second
line) computes the output h(l)

i (z(l−1)) of the i-th node in the l-th
layer by the following equation.

h
(l)
i (z(l−1)) = φ

(
w

(l)
i • z

(l−1)
)

(1)

where, z(l−1) =
[
h
(l−1)
1 (z(l−2)), · · · , h(l−1)

d (z(l−2)), 1
]T

is the in-

put vector fed into the l-th hidden layer, w(l)
i =

[
w

(l)
i,1, · · · , w

(l)
i,d, b

]T

6555978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

System Uncertainty #Parameter
λλλ w

DNN × × ab
DNN-JointDec[20, 21] × × 3ab

BNN ×
√

ab+ a

GPNN-0 × × ab+ 3b
GPNN-1

√
× ab+ 3 + 3b

GPNN-2[19] ×
√

ab+ a+ 3b
GPNN-3

√ √
ab+ a+ 3b+ 3

LSTM × × 4ab+ 4b2 + 4b
GPLSTM-1

√
× 4ab+ 4b2 + 24(b+ 1)

Table 1. The forms of parameter uncertainty considered and the
number of free parameters w.r.t. the number of hidden nodes per
layer in different DNN, BNN and GPNN systems, assuming the in-
put vector size is a and the number of nodes is b.

denotes the node’s weight vector, φ (·) is the activation function, and
• denotes the dot product.

In this paper, three widely used activation functions are em-
ployed as our basis activation functions, i.e., Sigmoid, Tanh, ReLU.
A simple form of stochastic activation function selection uses a lin-
ear interpolation over all the basis activation functions as

h
(l)
i (z(l−1)) =

∑
m

λ
(l,m)
i φm

(
w

(l,m)
i • z(l−1)

)
(2)

where λ(l,m)
i is the m-th basis activation coefficient, w(l,m)

i is the
fixed weight parameter and φm(·) is the m-th basis activation func-
tion. When given limited data, directly learning of weight parame-
ters

{
w

(l,m)
i

}
can lead to over-fitting and poor generalization.

3. BAYESIAN NEURAL NETWORK

In order to address the over-fitting and poor generalization problem
above, a Bayesian Neural Network (BNN) can be used. Instead of
using fixed-point estimates of weight parameters, posterior distri-
butions are used to model the uncertainty associated with weight pa-
rameters [22]. The expected hidden node output is marginalized over
different parameter estimates.

h
(l)
i (z(l−1)) =

∫
φ
(
w

(l)
i • z

(l−1)
)
p(w

(l)
i)dw

(l)
i (3)

where p(w(l)
i) = p(w

(l)
i | {xt, ŷt}) denotes the node dependent ac-

tivation parameter posterior distribution to be learned from training
data, φ (·) is the activation function. One key issue associated with
BNN is the selection of activation functions. This is normally deter-
ministic and requires expert knowledge.

4. GAUSSIAN PROCESS NEURAL NETWORK

Not only the weight parameters inside activation functions can be re-
garded as uncertain variables in BNNs, we can also regard the basis
coefficients as additional uncertain variables to be integrated over.
Thus the deterministic combination in Eqn.(2) is modified into dou-
ble integration of both weight and coefficient variables in Eqn.(4).

h
(l)
i (z(l−1)) =

∑
m

∫ ∫
λ
(l,m)
i φm

(
w

(l,m)
i • z(l−1)

)
p(w

(l,m)
i)p(λ

(l,m)
i)dw

(l,m)
i dλ

(l,m)
i

(4)

where p(λ(l,m)
i) = p(λ

(l,m)
i | {xt, ŷt}) and p(w(l,m)

i) = p(w
(l,m)
i |

{xt, ŷt}) denote the basis activation coefficient and parameter pos-
terior distributions respectively, and we assume the statistical inde-
pendence between these two variables. The general form of Gaus-
sian Process neural networks (GPNNs1) in Eqn.(4) proposed in this
paper subsuming the previous work in [19] can be simplified to three
different special cases depending on the parameter uncertainty been
considered.

4.1. Both λλλ and w are deterministic

In this case, both the basis activation coefficients
{
λ
(l,m)
i

}
and

weight parameters
{
w

(l,m)
i

}
are deterministic. This is the fixed

weight based system shown in Eqn.(2), also shown as GPNN-0
system (fifth line) in Table 1.

4.2. Treating λλλ as uncertain

When only {λ(l,m)
i } are treated as random variables, Eqn.(4) can be

simplified to the integration over basis coefficients in the following
form. This is shown as the GPNN-1 system (sixth line) in table 1.

h
(l)
i (z(l−1))=

∑
m

∫
λ
(l,m)
i φm

(
w

(l,m)
i •z(l−1)

)
p(λ

(l,m)
i)dλ

(l,m)
i

(5)
where w

(l,m)
i takes a fixed-point estimate.

4.3. Treating w as uncertain

This is the precursor form of Gaussian Process Neural Network we
propose in the early research [19]. This simplified form can be inter-
preted by a standard weight-space view of Gaussian Process [23].

h
(l)
i (z(l−1))=

∑
m

λ
(l,m)
i

∫
φm
(
w

(l,m)
i •z(l−1)

)
p(w

(l,m)
i)dw

(l,m)
i

(6)
where λ(l,m)

i takes a fixed-point estimate.

5. GAUSSIAN PROCESS LSTM-RNN

Using gated functions in cells, LSTM controls the information flow
and tracks longer context information that are useful to predict the
following speech frames. However, the precise form of activations
inside the LSTM has been set for all cells at a global level. Inspired
by the Gaussian Process (GP) based recurrent neural network in-
vestigated in language modeling [24], we use GP based activations
to replace the standard linear activation weights multiplied with the
hidden vector input at a previous time step in LSTM cells, which
is illustrated in Figure 1. A GPLSTM network computes a map-
ping from the input sequence of vectors {x1, · · · , xT } to an output
sequence {h1, · · · , hT } by calculating the network unit activation
using the following equations iteratively from t = 1 to T :

it = σσσ(Wixxt + ΘΘΘgp
ih (ht−1))

ft = σσσ(Wfxxt + ΘΘΘgp
fh(ht−1))

c̃t = σσσ(Wc̃xxt + ΘΘΘgp
c̃h(ht−1))

ot = σσσ(Woxxt + ΘΘΘgp
oh(ht−1))

ct = ft � ct−1 + it � c̃t

ht = ot � tanh(ct)

(7)

1The GPNN can be seen to combine multiple basis BNN activation out-
puts.

6556

𝒉𝑡

𝒙𝑡

σ tanhσ

× +

×
tanh

×

𝒉𝑡

𝒄𝑡

𝒉𝑡−1

σ

𝑃

𝒇𝑡
𝒊𝑡 𝒐𝑡

 𝒄𝑡

𝑃
𝐏𝐨𝐬𝐢𝐭𝐢𝐨𝐧 𝐟𝐨𝐫 𝐆𝐏

𝐀𝐜𝐭𝐢𝐯𝐚𝐭𝐢𝐨𝐧 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧
𝐄𝐥𝐞𝐦𝐞𝐧𝐭𝐰𝐢𝐬𝐞 𝐎𝐩𝐞𝐫𝐚𝐭𝐢𝐨𝐧

𝒄𝑡−1

Gate

Fig. 1. An example of the architecture of a GPLSTM cell (GP acti-
vation position highlighted as blue)

where the Wix, Wfx, Wc̃x, Wox are the matrix weights from in-
put gate, forget gate, cell activation output vector and output gate to
input, i, f ,o, c,h are respectively the input gate, forget gate, output
gate, cell state vector and hidden state vector, ΘΘΘgp is the GPNN out-
put, � is the element-wise multiplication. As is shown in Figure 1
in the left bottom corner, we apply a GPNN layer to map the hid-
den state ht−1 to a same dimensional space, e.g., ΘΘΘgp

ih (ht−1) is the
output of one GPNN layer by feeding ht−1 as the input vector.

6. VARIATIONAL INFERENCE BASED EFFICIENT
TRAINING FOR BNN AND GPNN SYSTEMS

The general forms of BNN in Eqn.(3), GPNN in Eqn.(4) and
GPLSTM in Eqn.(7) require integration over random variables
regarded as uncertain. Since the distributions of these random vari-
ables are intractable, there is no such closed form of the integral. Due
to its non-differentiability, direct application of back-propagation al-
gorithm is not applicable. Several techniques can be adopted to
approximate this integration, for example, the Laplace approxima-
tion using Gaussian shape proposed in [17]. In this paper, we apply
the variational inference approach [25] to solve this issue. And we
assume that the variational distribution and the prior distribution are
both Gaussian distributions following the work in [15]. To intro-
duce the variational inference approach, we take BNN model for
an example. For notation simplicity, we consider the parameters
w=w

(l,m)
i as the m-th basis of the i-th node in the layer l.

Applying Jensen’s inequality, we can calculate the evidence
lower bound of the conditional log-likelihood:

logP (y | x) = log

∫
P (y |w,x)Pr(w)dw

≥
∫
q(w) logP (y |w,x)dw︸ ︷︷ ︸

L1

−KL(q(w)‖Pr(w))︸ ︷︷ ︸
L2

= L (8)

where Pr(w) = N (µµµr,σσσ
2
r) denotes the weight prior distribution,

q(w) = N (µµµ,σσσ2) is the variational approximation of the parame-
ter posterior distribution p(w), KL(q‖Pr) is the Kullback-Leibler
(KL) divergence between q and Pr .

The first term L1 in Eqn.(8) can be efficiently approximated by
Monte Carlo (MC) sampling method.

L1 ≈
1

N

N∑
k=1

logP (y |µµµ+σσσ�εεεk,x) (9)

where εεεk=N (0, I) is the k-th sample.
The KL divergence between q and Pr of the second term L2 in

Eqn.(8) can be simplified as follows,

L2 =
∑
j

{
log

σr,j
σj

+
σ2
j + (µj − µr,j)2

2σ2
r,j

− 1

2

}
(10)

where µj and σj are the j-th component of variational posterior dis-
tribution hyper-parameters µµµ, σσσ, µr,j and σr,j are the j-th compo-
nent of prior distribution hyper-parameters µµµr and σσσr .

The gradient statistics can be computed for the hyper-parameters
θ = {µj , σj} as below.

∂L
∂µj

=
1

N

N∑
k=1

∂logP (y |x, θ, εεεk)

∂µj
−µj−µr,j

σ2
j

(11)

∂L
∂σj

=
1

N

N∑
k=1

∂logP (y |x, θ, εεεk)

∂σj
−
σ2
j−σ2

r,j

σjσ2
r,j

(12)

where ∂logP (y|x,θ,εεεk)
∂µj

, ∂logP (y|x,θ,εεεk)
∂σj

can be directly calculated us-
ing the standard back-propagation method.

An important issue when training DNN, BNN and GPLSTM
systems is the parameter prior to use. The choice of prior has an
impact on model convergence and training efficiency. In this paper,
we set the priors for BNN systems to be based on the standard DNN
systems using the same activations with fixed parameters. The pri-
ors of the GPNN systems are based on the fixed weighted activation
combination of Eqn.(2) (also shown as GPNN-0 system in table 1).

When evaluating the BNN and GPNN systems, the means of the
respective activation weight and basis coefficient parameter posterior
distributions are taken to calculate the integrals in L1 in a forward
pass. The frame level output probability tables are then fed to the
HDecode in the HTK toolkit [26] to produce the recognition outputs.

7. EXPERIMENTS

This section describes our experiments carried out on the 75 hour
Switchboard I data to evaluate the performance of DNN, BNN,
GNNN and GPLSTM systems.

7.1. Experimental Setup

Our 75 hour Switchboard I data consisted of randomly selected 1082
conversational sides out of the 4870 speakers from the 300 hour
Switchboard I corpus. On the same 300 hours data, if using all the
training speakers, the word error rates (WERs) of previous published
DNN and TDNN systems [27, 28] on the swbd subset of the hub5
2000 evaluation set were reported to be 15.1 and 14.0. By using
the same 300 hour full set and a four-gram language model (LM)
trained on the Switchboard and Fisher transcripts, a cross-entropy
(CE) trained stacked hybrid DNN baseline system gave a WER of
13.5 on the swbd set. A comparable version of this stacked DNN
system was then trained on the 75 hour subset and used as the base-
line DNN system in our experiments.

In our experiments, all systems used 6062 decision tree clustered
triphone states as the output targets. In common with the bottleneck
(BN) features used in a tandem system [29], we concatenated 39 di-
mensional BN features learned from a DNN with 13 dimensional
PLP features including differential parameters up to the third order
as the stacked DNN system inputs. A 9 frame context window was
used. Both the bottleneck feature DNN and the stacked DNN used 6

6557

non-constrictive hidden layers of 2000 neurons each. During train-
ing, we performed a layer-wise discriminative pretraining, then fine-
tuned the whole network using a NEWBOB learning rate scheduler.
For performance evaluation, we used both the Switchboard (swbd)
and CallHome (callhm) subsets of the HUB5 2000 evaluation set.

All our DNN, BNN, GPNN and LSTM based systems were op-
timized using stochastic gradient descent (SGD) with momentum in
PyTorch [30]. In order to obtain a fair comparison, the BNN and
GPNN systems shared the same model structure as the DNN sys-
tems except the first hidden layer was modified to use the Bayesian
activation of Eqn.(3) or the GP activations of section 4. In the LSTM
and GPLSTM systems, we replaced the last two hidden layers of the
DNN system with a comparable LSTM or GPLSTM layer. Based on
the DNN system performances of Table 2 using Sigmoid or other ac-
tivations, we decided to fix all the other subsequent non-GPNN lay-
ers using Sigmoid activation functions. In order to retain a compa-
rable number of free parameters, the hyper-parameter µµµ was shared
within the same hidden node and σσσ was shared among all the hidden
nodes in the same layer.

7.2. Performance of BNN systems

In this section, we compare the performance of various DNN base-
line systems and comparable BNN systems constructed using three
basis activation functions, i.e., Sigmoid, ReLU and Tanh. These are
shown in Table 2. There are two main trends observed in the re-
sults of Table 2. First, irrespective of the activation functions being
used, the BNN systems consistently outperformed the DNN baseline
systems with the same activation functions. Second, there was also
a large difference in performance between systems using different
activation functions.

System Activation FrAcc(%) WER(%)
swbd callhm

DNN
Sigmoid 58.16 18.0 32.5
ReLU 57.51 18.1 33.3
Tanh 48.34 18.9 33.2

BNN
Sigmoid 58.29 17.1 32.3
ReLU 56.41 18.0 33.1
Tanh 50.81 17.9 32.8

Table 2. Performance comparison of baseline DNN and BNN sys-
tems on the swbd and callhm data

7.3. Performance of GPNN systems

A frame level joint decoding [20, 21] based combination system that
equally combined the log-posterior probabilities of Sigmoid, Tanh
and ReLU DNN systems served as a baseline activation combina-
tion method shown in the second line of Table 3. The performance
of four different GPNN systems presented in Section 4 is shown in
the remaining part of Table 3. Several trends can be observed from
the results of Table 3. First, fixed weight parameters based GPNN-0
system presented in Section 4 and Eqn.(2) produced a large improve-
ment on the swbd subset by 0.9% absolute over the DNN-JointDec
system, although no improvements on the callhm subset. Second,
modeling parameter uncertainty either using GPNN-1 system for ba-
sis activation coefficients {λλλ(l)

i }, or modeling the uncertainty over
the weight parameters {w(l)

i } in the GPNN-2 system, consistent im-
provements were further obtained over the GPNN-0 system by 0.8%

absolute on the callhm subset. Finally, the best performance was
obtained with the GPNN-3 system which modelled the uncertainty
associated with both basis coefficients and weight parameters shown
in Eqn.(4). Compared with the DNN baseline system using Sigmoid
activation functions (second line in Table 2) as the best activation
choice, the GPNN-3 system produced a 0.8% absolute WER reduc-
tion on the swbd subset and a 0.7% absolute improvement on the
callhm subset. This system also outperformed the joint decoding
system by 1% absolute on both test sets.

System FrAcc(%) WER(%)
swbd callhm

DNN-JointDec - 18.2 32.8
GPNN-0 58.18 17.3 32.8
GPNN-1 58.78 17.4 32.0

GPNN-2[19] 58.39 17.4 32.0
GPNN-3 58.13 17.2 31.8

Table 3. Performance comparison of DNN-JointDec and GPNN sys-
tems on the swbd and callhm data

7.4. Performance of GPLSTM-RNN systems

In this section, we made an initial investigation of GPLSTM system
performance on the same 75 hour training set. Its performance con-
trast against the baseline LSTM system is shown in Table 4. Com-
pared with the DNN baseline systems shown in Table 2, the LSTM
system produced much better cross validation data frame level ac-
curacy. However, this system did not not produce lower word error
rates.2 In common with the trends found in Table 3, the GPLSTM
system also consistently outperformed the LSTM baseline system by
0.5% and 0.4% absolute on both test sets.

System FrAcc (%) WER(%)
swbd callhm

LSTM 62.32 18.6 34.1
GPLSTM-1 61.84 18.1 33.7

Table 4. Performance comparison of baseline LSTM and GPLSTM
systems on the swbd and callhm data

8. CONCLUSIONS

In this paper, we investigated BNN, GPNN and GPLSTM acoustic
models for LVCSR systems. Consistent performance improvements
by up to 1% were obtained over DNN and LSTM baseline systems
with deterministic activation function and fixed parameter estimates.
To the best of our knowledge, this is the first work to apply GPNN,
GPLSTM acoustic models to LVCSR tasks. Future research will
focus on further investigation of GPLSTM system performance and
its application to other data sets.

2A further investigation was also made to train an alternative LSTM
system with non-tandem, standard filter bank features as its inputs. How-
ever, this LSTM system in practice produced higher WERs than the baseline
LSTM system trained on tandem features shown in the second line of Table
4, and therefore was not used in our experiments.

6558

9. REFERENCES

[1] Steve Renals, Nelson Morgan, Hervé Bourlard, Michael Co-
hen, and Horacio Franco, “Connectionist probability estima-
tors in hmm speech recognition,” IEEE Transactions on Speech
and Audio Processing, vol. 2, no. 1, pp. 161–174, 1994.

[2] Herve A Bourlard and Nelson Morgan, Connectionist speech
recognition: a hybrid approach, vol. 247, Springer Science &
Business Media, 2012.

[3] Tony Robinson and Frank Fallside, “A recurrent error propa-
gation network speech recognition system,” Computer Speech
and Language, vol. 5, no. 3, 1991.

[4] Alex Waibel, “Consonant recognition by modular construction
of large phonemic time-delay neural networks,” in Advances
in neural information processing systems, 1989, pp. 215–223.

[5] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-
rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent
Vanhoucke, Patrick Nguyen, Tara N Sainath, et al., “Deep neu-
ral networks for acoustic modeling in speech recognition: The
shared views of four research groups,” IEEE Signal processing
magazine, vol. 29, no. 6, pp. 82–97, 2012.

[6] Kyu J Han, Seongjun Hahm, Byung-Hak Kim, Jungsuk Kim,
and Ian Lane, “Deep learning-based telephony speech recog-
nition in the wild,” in Proc. Interspeech, 2017, pp. 1323–1327.

[7] Wayne Xiong, Lingfeng Wu, Fil Alleva, Jasha Droppo, Xue-
dong Huang, and Andreas Stolcke, “The microsoft 2017 con-
versational speech recognition system,” in 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 5934–5938.

[8] William Hartmann, Roger Hsiao, Tim Ng, Jeff Ma, Francis
Keith, and Man-Hung Siu, “Improved single system conver-
sational telephone speech recognition with vgg bottleneck fea-
tures,” Proc. Interspeech 2017, pp. 112–116, 2017.

[9] Mingkun Huang, Yongbin You, Zhehuai Chen, Yanmin Qian,
and Kai Yu, “Knowledge distillation for sequence model,”
Proc. Interspeech 2018, pp. 3703–3707, 2018.

[10] Vinod Nair and Geoffrey E Hinton, “Rectified linear units im-
prove restricted boltzmann machines,” in Proceedings of the
27th international conference on machine learning (ICML-10),
2010, pp. 807–814.

[11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio, “Deep
sparse rectifier neural networks,” in Proceedings of the four-
teenth international conference on artificial intelligence and
statistics, 2011, pp. 315–323.

[12] Haşim Sak, Andrew Senior, and Françoise Beaufays, “Long
short-term memory recurrent neural network architectures for
large scale acoustic modeling,” in Fifteenth annual conference
of the international speech communication association, 2014.

[13] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton,
“Speech recognition with deep recurrent neural networks,” in
Acoustics, speech and signal processing (icassp), 2013 ieee in-
ternational conference on. IEEE, 2013, pp. 6645–6649.

[14] David JC MacKay, “A practical bayesian framework for back-
propagation networks,” Neural computation, vol. 4, no. 3, pp.
448–472, 1992.

[15] David Barber and Christopher M Bishop, “Ensemble learning
in bayesian neural networks,” NATO ASI SERIES F COM-
PUTER AND SYSTEMS SCIENCES, vol. 168, pp. 215–238,
1998.

[16] Alex Graves, “Practical variational inference for neural net-
works,” in Advances in neural information processing systems,
2011, pp. 2348–2356.

[17] Jen-Tzung Chien and Yuan-Chu Ku, “Bayesian recurrent neu-
ral network for language modeling,” IEEE transactions on neu-
ral networks and learning systems, vol. 27, no. 2, pp. 361–374,
2016.

[18] Franco Manessi and Alessandro Rozza, “Learning
combinations of activation functions,” arXiv preprint
arXiv:1801.09403, 2018.

[19] Max WY Lam, Shoukang Hu, Xurong Xie, Shansong Liu,
Jianwei Yu, Rongfeng Su, Xunying Liu, and Helen Meng,
“Gaussian process neural networks for speech recognition,”
Proc. Interspeech 2018, pp. 1778–1782, 2018.

[20] Pawel Swietojanski, Arnab Ghoshal, and Steve Renals, “Re-
visiting hybrid and gmm-hmm system combination tech-
niques,” in Proceedings of the IEEE International Conference
on. Wydawnictwo Naukowe PWN-Polish Scientific Publishers
PWN, 2013, vol. 21, pp. 1120–1124.

[21] Haipeng Wang, Anton Ragni, Mark John Gales, Kather-
ine Mary Knill, Philip Charles Woodland, and Chao Zhang,
“Joint decoding of tandem and hybrid systems for improved
keyword spotting on low resource languages,” 2015.

[22] Radford M Neal, Bayesian learning for neural networks, vol.
118, Springer Science & Business Media, 2012.

[23] Matthias Seeger, “Gaussian processes for machine learning,”
International journal of neural systems, vol. 14, no. 02, pp.
69–106, 2004.

[24] Max WY Lam, Xie Chen, Shoukang Hu, Jianwei Yu, Xunying
Su, and Helen Meng, “Gaussian process lstm recurrent neural
network language models for speech recognition,” Submission
to ICASSP 2019.

[25] David M Blei, Alp Kucukelbir, and Jon D McAuliffe, “Vari-
ational inference: A review for statisticians,” Journal of the
American Statistical Association, vol. 112, no. 518, pp. 859–
877, 2017.

[26] Steve Young, Gunnar Evermann, Mark Gales, Thomas Hain,
Dan Kershaw, Xunying Liu, Gareth Moore, Julian Odell, Dave
Ollason, Dan Povey, et al., “The htk book,” Cambridge uni-
versity engineering department, vol. 3, pp. 175, 2002.

[27] Vijayaditya Peddinti, Daniel Povey, and Sanjeev Khudanpur,
“A time delay neural network architecture for efficient model-
ing of long temporal contexts,” in Sixteenth Annual Conference
of the International Speech Communication Association, 2015.

[28] Karel Veselỳ, Arnab Ghoshal, Lukás Burget, and Daniel Povey,
“Sequence-discriminative training of deep neural networks.,”
in Interspeech, 2013, pp. 2345–2349.

[29] Frantisek Grezl and Petr Fousek, “Optimizing bottle-neck fea-
tures for lvcsr.,” in ICASSP, 2008, vol. 8, pp. 4729–4732.

[30] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan,
Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmai-
son, Luca Antiga, and Adam Lerer, “Automatic differentiation
in pytorch,” 2017.

6559

